蔡司三坐标测量仪官方授权代理商
德国工业测量百年品牌
工业质量解决方案供应商
联系方式
免费电话:400-1500-108
手机咨询:15850350764
您当前的位置: 首页 > 关于我们 > 行业资讯

行业资讯

透射电子显微镜的结构之观察记录系统

更新时间  2021-10-29 15:39:39 阅读

   三、观察、记录系统

  1.观察室

  透射电镜的最终成像结果,显现在观察室内的荧光屏上,观察室处于投影镜下,空间较大,开有1~3个铅玻璃窗,可供操作者从外部观察分析用。对铅玻璃的要求是既有良好的透光特性,又能阻断X线散射和其他有害射线的逸出,还要能可靠地耐受极高的压力差以隔离真空。

透射电镜

蔡司场发射扫描电镜

  由于电子束的成像波长太短,不能被人的眼睛直接观察,电镜中采用了涂有荧光物质的荧光屏板把接收到的电子影像转换成可见光的影像。观察者需要在荧光屏上对电子显微影像 进行选区和聚焦等调整与观察分析,这要求荧光屏的发光效率高,光谱和余辉适当,分辨力好。目前多采用能发黄绿色光的硫化锌-镉类荧光粉做为涂布材料,直径约在15~20cm。

  荧光屏的中心部分为一直径约10cm的圆形活动荧光屏板,平放时与外周荧屏吻合,可以进行大面积观察。使用外部操纵手柄可将活动荧屏拉起,斜放在45°角位置,此时可用电镜置配的双目放大镜,在观察室外部通过玻璃窗来精确聚焦或细致分析影像结构;而活动荧光屏完全直立竖起时能让电子影像通过,照射在下面的感光胶片上进行曝光。

  2.照相室

  在观察中电子束长时间轰击生物医学样品标本,必会使样品污染或损伤。所以对有诊断分析价值的区域,若想长久地观察分析和反复使用电镜成像结果,应该尽快把它保留下来,将因为电子束轰击生物医学样品造成的污染或损伤降低到最小。此外,荧光屏上的粉质颗粒的解像力还不够高,尚不能充分反映出电镜成像的分辨本领。将影像记录存储在胶片上��照相,便解决了这些问题。

  照相室处在镜筒的最下部,内有送片盒(用于储存未曝光底片)和接收盒(用于收存已曝光底片)及一套胶片传输机构。电镜生产的厂家、机型不同,片盒的储片数目也不相同,一般在20~50片/盒左右,底片尺寸日本多采用82.5mm×118mm,美国常用82.5mm×101.6mm,而欧州则用90mm×120mm。每张底片都由特制的一个不锈钢底片夹夹持,叠放在片盒内。工作时由输片机构相继有序地推放底片夹到荧光屏下方电子束成像的位置上。曝光控制有手控和自控两种方法,快门启动装置通常并联在活动荧光屏板的扳手柄上。电子束流的大小可由探测器检测,给操作者以曝光指示;或者应用全自动曝光模式由计算机控制,按程序选择曝光亮度和最佳曝光时间完成影像的拍摄记录。

  现代电镜都可以在底片上打印出每张照片拍摄时的工作参数,如:加速电压值、放大率 、微米标尺、简要文字说明、成像日期、底片序列号及操作者注解等备查的记录参数。观察室与照相室之间有真空隔离阀。以便在更换底片时,只打开照相室而不影响整个镜筒的真空。

  3.阴极射线管(CRT)显示器

  电镜的操作面板上的CRT显示器主要用于电镜总体工作状态的显示、操作键盘的输入内容显示、计算机与操作者之间的人机对话交流提示以及电镜维修调整过程中的程序提示、故障警示等。

  四、调校系统

  1.消像散器

  像散(指轴上像散)的产生除了前面介绍的材质、加工精度等原因以外,实际上在使用过程中,会因为各部件的疲劳损耗、真空油脂的扩散沉积、以及生物医学样品中的有机物在电子束照射下的热蒸发污染等众多因素逐渐积累,使得像散也在不断变化。所以像散的消除在电镜制造和应用之中都成了必不可少的

  重要技术。

  早期电镜中曾采用过机械式消像散器,利用手动机械装置来调整电磁透镜周围的小磁铁 组成的消像散器,来改变透镜磁场分布的缺陷。但由于调整的精确性和使用的方便性均难令人满意,现在这种方式已被淘汰。目前的消像散器由围绕光轴对称环状均匀分布的8个小电磁线圈构成,见图4-21,用以消除(或减小)电磁透镜因材料、加工、污染等因素造成的像散。其中每4个互相垂直的线圈为1组,在任一直径方向上的2个线圈产生的磁场方向相反,用2组控制电路来分别调节这2组线圈中的直流电流的大小和方向,即能产生1个强度和方向可变的合成磁场

  以补偿透镜中所原有的不均匀磁场缺陷(图中椭圆形实线),以达到消除或降低轴上像散的效果。

  一般电镜在第2聚光镜中和物镜中各装有2组消像器,称为聚光镜消像散器和物镜消像散器。聚光镜产生的像散可从电子束斑的椭圆度上看出,它会造成成像面上亮度不均匀和限制分辨率的提高。调整聚光镜消像散器(镜体操作面板上装有对应可调旋钮),使椭圆形光斑恢复到最接近圆状即可基本上消除聚光镜中存在的像散。

  物镜像散能在很大程度上影响成像质量,消除起来也比较困难。通常使用放大镜观察样品支持膜上小孔在欠焦时产生的费涅尔圆环的均匀度,或者使用专门的消像散特制标本来调整消除,这需要一定的经验和操作技巧。近年来在一些高档电镜机型之中,开始出现了自动消像散和自动聚焦等新功能,为电镜的使用和操作提供了极大的方便。

  2.束取向调整器及合轴

  *理想的电镜工作状态,应该是使电子枪、各级透镜与荧光屏中心的轴线绝对重合。但这是很难达到的,它们的空间几何位置多多少少会存在着一些偏差,轻者使电子束的运行发生偏离和倾斜,影响分辨力;稍微严重时会使电镜无法成像甚至不能出光(电子束严重偏离中轴,不能射及荧光屏面)。为此电镜采取的对应弥补调整方法为机械合轴加电气合轴的操作。

  机械合轴是整个合轴操作的先行步骤,通过逐级调节电子枪及各透镜的定位螺丝,来形成共同的中心轴线。这种调节方法很难达到十分精细的程度,只能较为粗略地调整,然后再辅之以电气合轴补偿。

  电气合轴是使用束取向调整器的作用来完成的,它能使照明系统产生的电子束做平行移动和倾斜移动,以对准成像系统的中心轴线。束取向调整器分枪(电子枪)平移、倾斜和束(电子束)平移、倾斜线圈两部分。前者用以调整电子枪发射出电子束的水平位置和倾斜角度;后者用以对聚光镜通道中电子束的调整。均为在照明光路中加装的小型电磁线圈,改变线圈产生的磁场强度和方向,可以推动电子束做细微的移位动作。

  合轴的操作较为复杂,不过在合轴操作完成后,一般不需经常调整。只是束平移调节作为一 个经常调动的旋钮,放在电镜的操作面板上,供操作者在改变某些工作状态(如放大率变换)后,将偏移了的电子束亮斑中心拉回荧光屏的中心,此调节器旋钮也称为“亮度对中”钮。

  3.光阑

  如前所述,为限制电子束的散射,更有效地利用近轴光线,消除球差、提高成像质量和反差 ,电镜光学通道上多处加有光阑,以遮挡旁轴光线及散射光。

  光阑有固定光阑和活动光阑2种,固定光阑为管状无磁金属物,嵌入透镜中心,操作者无法调整(如聚光镜固定光阑)。活动光阑是用长条状无磁性金属钼薄片制成,上面纵向等距离排列有几个大小不同的光阑孔,直径从数十到数百个微米不等,以供选择使用。活动光阑钼片被安装在调节手柄的前端,处于光路的中心,手柄端在镜体的外部。活动光阑手柄整体的中部,嵌有“O”形橡胶圈来隔离镜体内外部的真空。可供调节用的手柄上标有1、2、3、4号定位标记,号数越大,所选的就孔径越小。光阑孔要求很圆而且光滑,并能在 X、Y方向上的平面里做几何位置移动,使光阑孔精确地处于光路轴心。因此,活动光阑的调节手柄,应能让操作者在镜体外部方便地选择光阑孔径,调整、移动活动光阑在光路上的空间几何位置。

  电镜上常设3个活动光阑供操作者变换选用:①聚光镜C2光阑,孔径约在20~200μm左右,用于改变照射孔径角,避免大面积照射对样品产生不必要的热损伤。光阑孔的变换会影响光束斑点的大小和照明亮度;②物镜光阑,能显著改变成像反差。孔径约在10~100μm 左右,光阑孔越小,反差就越大,亮度和视场也越小(低倍观察时才能看到视场的变化)。若选择的物镜光阑孔径太小时,虽能提高影像反差,但会因电子线衍射增大而影响分辨能力,且易受到照射污染。如果真空油脂等非导电杂质沉积在上面,就可能在电子束的轰击下充放电,形成的小电场会干扰电子束成像,引起像散,所以物镜光阑孔径的选择也应适当;③中间镜光阑,也称选区衍射光阑,孔径约在50~400μm左右,应用于衍射成像等特殊的观察之中。